Posterior probability intervals for wavelet thresholding

نویسندگان

  • Stuart Barber
  • Guy P. Nason
  • Bernard W. Silverman
چکیده

We use cumulants to derive Bayesian credible intervals for wavelet regression estimates. The first four cumulants of the posterior distribution of the estimates are expressed in terms of the observed data and integer powers of the mother wavelet functions. These powers are closely approximated by linear combinations of wavelet scaling functions at an appropriate finer scale. Hence, a suitable modification of the discrete wavelet transform allows the posterior cumulants to be found efficiently for any given data set. Johnson transformations then yield the credible intervals themselves. Simulations show that these intervals have good coverage rates, even when the underlying function is inhomogeneous, where standard methods fail. In the case where the curve is smooth, the performance of our intervals remains competitive with established nonparametric regression methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Inference with Wavelets: Density Estimation

We propose a prior probability model in the wavelet coeecient space. The proposed model implements wavelet coeecient thresholding by full posterior inference in a coherent probability model. We introduce a prior probability model with mixture priors for the wavelet coeecients. The prior includes a positive prior probability mass at zero which leads to a posteriori threshold-ing and generally to...

متن کامل

EbayesThresh: R and S-PLUS programs for Empirical Bayes thresholding

This report sets out a package of R and S-PLUS routines that implement a class of Empirical Bayes thresholding methods. The prior considered for each parameter in a sequence is a mixture of an atom of probability at zero and a heavy-tailed density. The package allows for the heavy-tailed density to be either a Laplace (double exponential) density or else a mixture of normal distributions with t...

متن کامل

EbayesThresh: R Programs for Empirical Bayes Thresholding

Suppose that a sequence of unknown parameters is observed subject to independent Gaussian noise. The EbayesThresh package in the S language implements a class of Empirical Bayes thresholding methods that can take advantage of possible sparsity in the sequence, to improve the quality of estimation. The prior for each parameter in the sequence is a mixture of an atom of probability at zero and a ...

متن کامل

Tracking Small Hand Movements in Interview Situations

In this paper, we motivate ongoing work into developing methods for the automated tracking of small hand movements in interview situations to aid nonverbal behaviour analysis in the detection of deception. Existing techniques for detecting and tracking hand motion are reviewed to place current and future technical work into context. We present a modification to the popular colour predicate appr...

متن کامل

On posterior distribution of Bayesian wavelet thresholding

We investigate the posterior rate of convergence for wavelet shrinkage using a Bayesian approach in general Besov spaces. Instead of studying the Bayesian estimator related to a particular loss function, we focus on the posterior distribution itself from a nonparametric Bayesian asymptotics point of view and study its rate of convergence. We obtain the same rate as in Abramovich et al. (2004) w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001